1. Introduction

In C++, a virtual function is a member function of a class that is declared using the keyword virtual and is
meant to be overridden in a derived class.

Virtual functions support runtime polymorphism, which means the function call is resolved at runtime
rather than compile time.

Virtual functions are an important concept of Object-Oriented Programming (OOP) and are mainly
used in inheritance.

2. Polymorphism in C++

Polymorphism means “many forms”.
In C++, polymorphism is of two types:

1. Compile-time polymorphism
o Function overloading
o Operator overloading
2. Runtime polymorphism
o Achieved using virtual functions

Virtual functions allow a base class pointer to call the derived class version of a function.

3. Need for Virtual Functions

Without virtual functions, C++ uses early binding (compile-time binding).
This causes the base class function to be called even when a derived class object is used.

Virtual functions solve this problem by using late binding (dynamic binding).
Why virtual functions are required:

e To achieve runtime polymorphism

e To ensure correct function execution

e To allow dynamic behavior
e To support object-oriented design

4. Definition of Virtual Function

A virtual function is a member function of a class that:

e Is declared using the keyword virtual

e Isusually accessed using a base class pointer
e Isoverridden in a derived class
e Isresolved at runtime

5. Syntax of Virtual Function

class Base {
public:
virtual void display() {

cout << "Base class display function”;

}

In the derived class:

class Derived : public Base {
public:
void display() {
cout << "Derived class display function";

}

)

6. Example Without Virtual Function

#include <iostream>
using namespace std;

class Base {
public:
void show() {
cout << "This is Base class show function";

b

class Derived : public Base {
public:
void show() {
cout << "This is Derived class show function";

{

Derived d;
b = &d;
b->show();
return 0;

}

Output
This is Base class show function

= This happens because function binding is done at compile time.

7. Example With Virtual Function

#include <iostream>
using namespace std;

class Base {
public:
virtual void show() {
cout << "This is Base class show function";

b

class Derived : public Base {
public:
void show() {
cout << "This is Derived class show function";

b

int main() {
Base* b;
Derived d;
b = &d;
b->show();
return 0;

Output
This is Derived class show function

= The correct function is called due to runtime polymorphism.

8. Working of Virtual Functions
Virtual functions work using a mechanism called Virtual Table (V-Table).
V-Table (Virtual Table):

e Created by the compiler

o Contains addresses of virtual functions

o Each object of a class has a pointer to the V-Table
e Function calls are resolved using this table at runtime

9. Virtual Table (V-Table) Explanation

e Base class has a V-Table for its virtual functions
o Derived class creates its own V-Table if functions are overridden

e Base class pointer refers to derived object
e Compiler checks V-Table to find correct function

This ensures dynamic binding.

10. Rules for Virtual Functions

Must be a member function of a class

Cannot be static

Usually accessed using base class pointer
Declared using keyword virtual in base class
Derived class function must have same signature
Constructor cannot be virtual

RN e

11. Virtual Function and Inheritance

Virtual functions work only when inheritance is used.

e Base class pointer — derived class object
e Function call depends on object type, not pointer type

This is the key concept behind runtime polymorphism.

12. Pure Virtual Function

A pure virtual function is a virtual function that has no definition in the base class.

Syntax

virtual void display() = 0;

A class containing at least one pure virtual function is called an abstract class.

13. Example of Pure Virtual Function

class Shape {
public:
virtual void draw() = 0;

b

class Circle : public Shape {
public:
void draw() {

cout << "Drawing Circle";

}

= Abstract classes cannot be instantiated.

14. Virtual Destructor

When deleting an object using a base class pointer, the destructor must be virtual to avoid memory
leaks.

class Base {
public:
virtual ~Base() {
cout << "Base Destructor";

}

This ensures both base and derived destructors are called properly.

15. Advantages of Virtual Functions

Achieves runtime polymorphism
Ensures correct function execution
Improves code flexibility

Supports dynamic behavior

Makes code more maintainable

16. Disadvantages of Virtual Functions

Slightly slower due to runtime binding
Requires extra memory for V-Table
e More complex than normal functions

17. Difference Between Virtual and Non-Virtual Functions

Feature Virtual Function Non-Virtual Function ‘

Binding Runtime Compile-time
Polymorphism Yes No
Performance Slower Faster
Flexibility High Low

18. Common Mistakes

o Forgetting to declare base function as virtual
e Incorrect function signature in derived class
e Not using base class pointer

e Forgetting virtual destructor

19. Applications of Virtual Functions

e Game development

e GUI frameworks

e Simulation software

e Device drivers

e Polymorphic class hierarchies

20. Conclusion

Virtual functions are a core feature of C++ OOP. They enable runtime polymorphism, allowing a
program to behave differently depending on the object type at runtime.

Using virtual functions:
o Improves design flexibility
e Supports dynamic behavior

o Makes large programs easier to manage

Mastering virtual functions is essential for becoming proficient in C++ object-oriented programming.

